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Latent Variable Analysis

Latent Variable Manifest Variable
Factor analysis Continuous Continuous
Latent trait analysis Continuous Discrete
Latent profile analysis | Discrete Continuous
Latent class analysis | Discrete Discrete

Bartholomew, D.J., and Knott, M. (1999). Latent Variable Models and Factor Analysis. London: Arnold.



Latent Class Analysis (LCA)

Developed in 1950’s

— Lazarsfeld, Henry, Green

Outcome variables can be dichotomous or
polytomous (hominal or ordinal)

Very extensive field

Advanced use requires knowledge of log-
linear models with and without latent

variables



Some applications of LCA

Nonsampling Error Analysis

* |dentifying flawed questions and other
guestionnaire problems

* Estimating census undercount in a capture-
recapture framework

* Characterizing respondents, interviewers, and
guestionnaire elements that contribute to survey
error

e Adjusting for nonresponse and missing data in
surveys

* We will only touch upon LCA applications



Some Other Applications (onq

Social Science Analysis
* Causal modeling

* Log-linear analysis compensating for measurement
error

* Cluster analysis
e Variable reduction and scale construction



Why in this course?

* Very useful class of models
* Few people seem to know about LCA

e Course plan indicates a content of science and
models. LCA does involve scientific issues.



Use of LCA for
Investigating Survey Error

 LCA methods and models are prone to misuse
— E.g., adjustment vs. evaluation
— Lack of attention to assumptions
— Weak indicators

 LCA is best use in conjunction with other
methods

* Avoid the temptation to believe the model is

true
— Consider the risks if the model is not true

— Take steps to verify the model assumptions and to
validate the estimates



Maximum Likelihood Estimaticn

Recall that #,6, and contain all the information we need to estimate:

n, the true population proportion

« SV, the sampling variance

* SRV, the simple response variance,
* R, the reliability ratio

* Measurement bias of the sample proportion,
Bias(p)

 Total variance, Var(p)
 Total MSE(p)

We can estimate 71,0, and ¢ in some cases using only information
from remeasurements of the characteristics of interest.



Latent Class Models for Measurement Error

Consider the following:

Reinterview (y,)

1 2
Interview (y,) 1 Ny N,
2 N3 Y.

Or more generally: any second measurement that is similar (or next
identical in type) to first measurement (i.e. not necessarily a better
measurement)
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Slight Change in Notation

y,, denotes observationt on unit r
y,, =1 denotes positive response and
= 2 denotes a negative response
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Assume:
* SRS (simple random sample)
* Two parallel measurements are available

* 7o =0 (homogenelity, ie constant
probabilities for misclassification)

Pr (ny, nyy, 1y, Ny,) 1s @ multinomial



Multinomial Distribution

Consider the distribution of the 2x2 table with cells
(11, 12, 21, 22)

Let 7, = P(y, falls in cell 11) and define similarly.
712170211 7022

Then,

N
P(n111 N5, Ny, nzz) — (

M1 M2 21 22
1N n jnn Tp Ty Ty
11 ""12 ""'21 "'22
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For the interview-reinterview table,
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7, = PO,
7Ty = POy,
7, = Py,
Ty = P(yy,

— 1’ y2r — l)
— 2, y2r — 1)
— 1’ y2r — 2)

— 2’ yZI’ — 2)
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77’-11 = P(ylr :1’ y2r :1|1ur :1)XP(lur :1)

+ P(ylr :1’ y2r zllu’r :2)XP(H|’ :2)

=(1-0)1-0)m + ¢d(1—m)

= (1-9)°n + ¢°(1—n)




77’.21 = P(ylr = 2’ y2r :1|1ur :1)XP(lur :1)
+ P(ylr — 2’ y2r :1|l’lr :Z)XP(Hr :2)

—0(1—0)+ (1— )b(1— 7)

By assumption: T, = Ty

77’.22 = P(ylr = 2’ y2r = 2 |1ur :1)XP(lur :1)
+ Py, =2, ¥, =2[u, =2)xP(u, =2)
=0’ + 1-9)*(1—n)
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Summarising:

| 1kelihood = L(TC, e; (I)‘ n111 n121 n211 nzz)

n

_ M1 M2 21 N2
P(n11’ Ny, Ny, nzz) = ( jnn Tlyp Tlo7 Tl

nll n12 n21 n22

[(1-0)*m+¢*(L—m)]™

n
— (nﬂ n nzzj x [01-0)+ d¢(1—)(L—m)] ™" ™
X [0°t+ (1-0)°(1—m)]™
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Maximum Likelihood Estimation

The best (ML) estimates of
T, O, ¢

are those that maximize L as a function of r, 9, ¢
Unfortunately, no unique solution exists (1€ model 1s not identifiable).

3 parameters
2 degrees of freedom (d.f.)

Why only 2 d.f. and not 3 since it 1s a 2x2 table?

# param > # d.f. and model 1s not identifiable.
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Notation for common probability
Suppose we let

0 =¢=¢, say
[ This 1s not realistic. Why not? Nevertheless...]

Then, plugging into the previous formula,

L(7y15m19, 1y, | T, €)
=constant [(1—¢)°m + €°(L—n)]™ x[e(1—¢€)]™"™™
x [’ + (1—¢)*(1—m)]™

Two parameters m,& and two d.f.,

SO NOW = m,& estimable
18



But, no d.f. left over to estimate model fit (no chi-square test).
Solution fits the data perfectly

==> model 1s saturated.

No d.f. test model validity or fit.
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Example

Reinterview
1
Interview 1 1000
2 100

Find MLE of 7, ¢

Numerical methods to solve equations, e.g.:
grid search
Newton-Raphson
Iterative Proportional Fitting (IPF)
EM-algorithm

2
50
500

20



More General Model (Hui-Walter,
1980)

Interview wr, 8(Int.), ¢(int.)
O(reint.), 6(reint.)

Assumes that error distributions for interview and reinterview are

not equal.
As before, we assume

 Single latent variable

» Local independence (we do not assume parallel measurements)

Need at least 5 d.f. to estimate these five parameters:

w,0(int.), ¢(int.), 6(reint.), ¢p(reint.)
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Trick: Introduce a Bivariate Grouping Variable, G

Group 1 (G=1)

Reinterview
1
Interview 1 M1
N121
Group 2 (G=2) Reinterview
1
Interview 1 211

N551

22

N115

N19o

Ny15

APy,



How many d.f. are there?
3 from G=1 table

3 from G=2 table

==, up to 6 parameters can be estimated

10 Parameters in the unrestricted model

0,(int.) 6,(reint.)
Group I 1y, (int.) ¢, (reint.)

0,(int.) 6,(reint.)
Group2 ™20 (int) ¢, (reint.)
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Need to constrain the model to save 4 df’s

Hui-Walter constraints
0,(int.) = 6,(int.) = 6,

(I)l(lnt) = (I)Z(Int) = (I)int
0,(reint.) = 0,(reint.) = 0.

c|>1(reint.) — (I)z(reint-) — (I)reint

In words, assume classification probabilities do not differ by group.

Now, 6 parameters and 6 d.f. so model can be estimated
Completely saturated, 1.e., 0 d.f. for error
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Likelihood

Likelihood = P(r,, 7,0 g=12,1=12 =12

int ?7int? relnt reintlngij’

oc (70, ) b (70151) h (7y1,) e (71,) iz (7051) rau (7051) a1 (7,05) a2 (705,) 2

= HHH (g™
where

7y =P(G=0,y,=1Y,=])
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Likelihood

These probabilities can be rewritten in terms of 7, 7,6, @ s Oreing  Brein
T = 7tgzl [(1_ eint)(l_ ereint)Tcl + d)int(l)reint (1_ Tcl)]

Ty = Tcg:Z [(1_ Gint)(l_ ereint)TcZ T (I)int(l)reint (1_ TEZ):

and so on.

Plug these into L and maximize to obtain ML estimates

A la o\

72-1 ’ﬂ-ZHint ’¢|nt ’ereint ’¢reint
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Results for 1996 US Current Population Survey

Reinterview
Input Data
Males Females

Interview Reinterview Response | | Interview Reinterview Response
Response | Emp | UNEMP | NLF| | R€sponse | enp [ UNEMP | NLF
EMP 2372 14| 29| |EMP 2087 6 60
UNEMP 10 90| 27| | UNEMP 10 75 41
NLF 75 18| 974 | | NLF 87 33| 1639

Are the Hui-Walter assumptions plausible for these data?
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Hui-Walter Model Estimates of Classification

Probabilities, fictitious numbers

Interview
True Status Observed Status
EMP UNEMP NLF

EMP 08.6 1.4 0.0
(0.1) (0.1) (n/a)
UNEMP 5.6 61.6 27.9
(15.2) (11.1) (5.3)
NLF 2.6 0.0 97.4
(1.5) (n/a) (1.1)

Standard errors in brackets
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Now: Three Indicator LC Model

DATA
C=1 Cc=2
B=1 B=2 B=1 B=2
AL Ny, N5 N5, N5,
AZ2l gy, N, N, N5,

29



Classical Latent Class Model

* Requires a minimum of three indicators of X
for unrestricted model

—Say, A, B, C
* Assumes local independence
—i.e., P(A and B and C|X) = P(A|X)P(B|X)P(C| X)

. Notatlon or ﬂx _ P(X _ x)

ﬂ-A a|X =x or 7Z-a|x P(A a‘ X _X)

Also, ", mio"

abc
30



Interpretations of Local Independence

ABC|X
abc|x

—> classification errors are independent
l.e., A, B,C represent independent
selections from an individual's

AX _BIX _C|X

a|x 7z-b|x 7T

7T clx

=T

response distribution

We can refer to this model as {4|X B|X C|X} or
{AX BX CX} (borrowed from log-linear modeling)

31
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Latent Class Model for Three
Indicators

L m)~ | 1] 1] 107ae)™

ABC X _ABC|IX X _AX __B|X C|X
abc Zﬂ- abclx Zﬂ- a|x 7z-b|x c|x



Path Diagram

bt

A B C

What is not shown is as important as what is shown



MLE Methods of Estimation

e rt-probability model

— Our focus in this course
* log-linear model with latent variable
* modified path model

The latter two methods require knowledge of
log-linear models which is not assumed in this
course
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LCA Software include:

* Free software
— €EM
— “SAS” by PennState University

e Commercial software
— Mplus
— Latent Gold

Others: http://www.john-
uebersax.com/stat/soft.htm
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Design of the NHSDA

* National, multistage, household survey
e 1994, 1995, 1996 data

e 43,825 total interviews

* data are weighted

* drug questions are repeated

* See Biemer and Wiesen (2002)
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Three Indicators of Past-Year
Marijuana Use

The Recency Question (Indicator A)

How long has it been since you last used
marijuana or hashish?

A =1 if either “Within the past 30 days” or
“More than 30 days but within past 12
months”

A = 2 if otherwise

37



Three Indicators of Past-Year
Marijuana Use

The Frequency Question (Indicator B )

Now think about the past 12 months from
your 12-month reference date through

today. On how many days in the past 12
months did you use marijuana or hashish?

B=1if responseis 1 or more days;
B =2 if otherwise
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Three Indicators of Past-Year
Marijuana Use

The Composite Question (Indicator C)
7 questions such as
e usedinlast 12 months?

e spent a great deal of time getting it, using it,
or getting over its effects?

e used drug much more often or in larger
amounts than intended?

C =1 if response is positive to any question;
C =2 if otherwise
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Evidence of Reporting Error:
Inconsistency in A, B, and C

Comparison
AVvs. B
Avs. C
Bvs.C

AVvs.Bvs.C

1994

1.35

4.80

4.96

5.55

1995

1.48

2.14

2.31

2.96

1996

1.61

2.48

2.69

3.39

40



1995 Marijuana Data

c=1 C=2

B=1 B=2 B=1 B=2
A=1 1158 11 73 3
A=2 114 191 135 16064

41
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Introduction to €EM

Input - marij example-basic.inp

man 3

lat 1

dim 2 2 2 2

lab X A B C

mod X A|X BIX C|X

dat [1158 73 11 3 114 135 191 16064]




Introduction to €EM (cont)

*Number of manifest variables

man 3

lat 1 *Number of latent variables
dim 2 2 2 2 *Dimensions

lab X A B C *Labels

mod X A[X B|X C|Xlodel

dat [1158 73 11 3 114 135 191 *Data
16064 ]

43
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Introduction to €EM (cont)

sta
dat
npa
nk2
nla

3
1
2 2 2 2
XAEBC

X AIXBIX CIX
ol
.1
o
1l '3

AIX [.9
BIX [.9
CIX [.9
[1158 73

Input - marij example.inp )

ol
.1

1

=101 x|

.9]
9]
.9]
114 135 191 16064]




lab
mod
sta
sta
sta
dat
npa
nR2
nla
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Introduction to €EM (cont)

11 3 114 135 191 16064]

2
C
X B|IX C|X
.9 .1 .1
°O .1 .1
°O .1 .1
y

@@@

]
]
]

*Number of manifest variables
*Number of latent variables
*Dimensions

*Labels

*Model

*Starting values for A
*Starting values for B
*Starting values for C

S Relle

*Data
*Output control
*Output control
*Output control



'BEIVI OUtpUt (cont’d)

LEM: log-linear and event history analysis with missing data.
Developed by Jeroen Vermunt (c), Tilburg University, The
Netherlands.

Version 1.0b (September 18, 1997).

* Kk Kk INPUT * Kk K

man 3

lat 1

dim 2 2 2 2
labXABC

mod AlX B|X C|X
sta AlX [.9 .1 .1 .9]
sta BIX [.9 .1 .1 .9]
sta C|X [.9 .1 .1 .9]
dat [1158 73 11 3 114 135 191 16064]
npa

nR2

4%la



'BEIVI OUtpUt (cont’d)

x%x%x STATISTICS ***

Number of iterations = 8
Converge criterion = 0.0000008181
Seed random values = 5307

X-squared = 0.0000 (0.0000)
L-squared 0.0000 (0.0000)
Cressie—-Read 0.0000 (0.0000)
Dissimilarity index = 0.0000

Degrees of freedom =0
Log-likelihood = —=7371.28926
Number of parameters = 7 (+1)

Sample size = 17749.0

BIC (L-squared) = 0.0000

AIC (L-squared) = 0.0000
BIC(log-likelihood) = 14811.0671
AIC(log-likelihood) = 14756.5785

WARNING: no information 1is provided on identification of
parameters




* Kk Kk

N NN R
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'BEIVI OUtpUt (cont’d)

FREQUENCIES ***

N NNERPRP RPN~ R~

N RPN RPN DD PO

observed
1158.
73.
.000
3.
.000
135.
191.
16064.

11

114

000
000

000

000

000
000

estimated
1157.
73.
.001
.999
.001
134.
191.
1c064.

11
2
114

999
001

999
000
000

std.

res.

.000
.000
.000
.000
.000
.000
.000
.000



'BEIVI OUtpUt (cont’d)

x*** (CONDITIONAL) PROBABILITIES ***

* P (X) *
1 0.0768
2 0.9232

* P(A[X) *

L9115
.0885
.0001
.9999

N RN
DN -
o o o o
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'BEIVI OUtpUt (cont’d)

o o o o

o o o o

.9906
.0094
.0079
.9921

.9407
.0593
.0117
. 9883
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Fit Statistics

X-squared

L-squared

Dissimilarity index
Degrees of freedom
Log-likelihood

Number of parameters
Sample size
BIC(L-squared)
AIC(L-squared)



Pearson Statistic

o 2
X 2 _ Z(nabc A_ mabc)
abc m

abc

m_ . = model estimated frequency in cell (a, b, c)

Distributed approximately as a chi-
square random variable 1f the model 1s
true. Poor approximation 1if average cell
size 1s less than 3.
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Likelihood Ratio Chi-square Statistic

ZZnabC Iog( Nabe )

abc

Distributed approximately as a chi-
square random variable 1f the model 1s
true. Poor approximation if average cell
size 1s less than 3.



Dissimilarity Index

D — ZZ‘ Nape — rﬁabc: ‘
abc 2N

Smallest proportion of observations

that would need to be reallocated to other cells
to make the model fit perfectly.

Should be less than 0.05 for a well-fitting
model.
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Degrees of Freedom

df = number of cells -
number of estimated model parameters

95
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Log-Likelihood

IOg(I—) — Znabc Iog(/z\-abc)

abc
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BIC, AIC, BIC-L? and AIC-L?

BIC =-2logL + (logn) x npar
AIC =-2logL + 2npar

BIC (L) = L —df log(n)
AIC(L*) =L —df 2



Three Indicator Model with a
Grouping Variable

Model: GX A|X B|X C|X
G

AN




Three Indicator Model with a
Grouping Variable

Model: GX A|X B|X C|X

This 1s the Hui-Walter | (G
model for three |
indicators.

X

Do you see the
implied constraintsV \

A B C

59



€EM Input Code

man 4 * 4 manlifest variables
lat 1 * 1 latent variable
dim 2 2 2 2 2

* —
lab X S A B C S 1Jg[%§§§les)
mod SX A|X B|X C|X
rec 160 * 16 records 1n data set
rco * last column 1s a count
sta A|X [.9 .1 .1 .9]
sta B|IX [.9 .1 .1 .9]
sta C|X [.9 .1 .1 .9]
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Count

Data ordering 1is
Sex A B C

*
*

LO (@)

— OO O
LOOMOANT OO OYNO LW
LONOO A<M O AT~ 00

Q
S
O
O
s
>
Q.
C
>
LL]
D

AN NN NN NN — N

A NN A NN A" NN~ — NN

e A A A N NN N~ — NN NN
) (VIQN!
© Q,
OVOAA A A" NNNNNNNN G C




Three Indicator Model with a
Grouping Variable — Fully Saturated

A B C

Model: GX A[XG B|XG CIXG
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Three Indicator Model with a
Grouping Variable — Fully Saturated

rGABC ZﬂGX AIXG _B|XG __CIXG

gabc alxg ﬂ-b|xg 7Z-C|xg



man
lat

dim 2 2 2 2 2
lab X S A B C
SX A|SX B|SX C|S>3

mod
rec
rco
sta
sta
sta

64

4
1

16

A
B
C

SX
SX
SX

€EM Input Code

O

O

(Starting values for each

group. Order consistent
with 1ab statement




€EM Results for Grouping Variable Models

Model df | L? o D | BIC-L?

X A|X B|X C|X 49.0| 0.0| 0.024| 117.4799
SXAIX B|X C|X 33.2| 0.0| 0.006| -25.4787
SXA|XS B|XS C|XS 0 n/a 0 0
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€EM Estimates for Model 2

PROBABILITIES ***

(CONDITIONAL)

* Kk Kk

P(XS) *

*

P(B|X) *

*

LOLO O v
(@ XN RNQN
OO OO
9009

OOOO

—— NN

— AN — N

P(C|X) *

*

NoOI—~—m™M
OO0
< LO +— QO
9009

OOOO

—— NN

— AN — N

— 0O LO O
LOOMO
TN N O
o<«

OO Oo

— AN +— N

—— NN

*

P (A]X)

*

OO
— O OO
— 0O
OJOOOJ

OOOO

—— AN N

— AN — N
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Specifying Hui-Walter Model in €EM

Model: GX AX BX

G

N
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Two Parameter, Two Indicator Model

lat 1

o N

A=1|X=2
B=1|X=2

O X XD 5N T N




A Model for Estimating Mode Effects

Study Design (Biemer, 2001)

Draw a sample and randomly Reinterview by CATI
divide. Assign one subsample to
F-F; the other to CATI. B=1 B=2
Reinterview both by CATI.
Interview by A=1 Neyq Nego
Face to face

Ase Ny NEoo
Interview by A=1 Nryq g
CATI

A Nroy Nroo
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Model Assumptions

X denotes (latent) true characteristic
G=1 denotes F-F sample

X|G X|G
G=2 denotes CATl sample 7,, # 7,y

CATI interview and CATI reinterview share a
common mode effect; i.e.,

AXG _ _BIXG _ _BIXG _
Tong = opp = lopp = 6, and

AXG _ _BIXG _ _BIXG _
T2 = 2 = Ty =@
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Summary of Model Parameters

G _XIG _X|G
P 2l i o N S/ S

Leaving 0 d.f. for testing fit



Does Anyone Smoke Inside the

Home?
Reinterview by CATI
R=1 R=2
Interview by F=1 334 70
Face to face
F=2 29 1233
Interview by T=1 282 20
CATI
T=2 9 931

12



€EM Input Code

* Example: Does Anyone Smoke Inside the Home?
lat
man 3
dim 2
lab X
mod G

=

sta X|G [.3 .4 .7 .06]
des [0

dat [ 334 70 29 1233
282 20 9 931]
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* Example:

lat
man
dim
lab
mod

sta
des

dat

74

=

[

€EM Input Code

Does Anyone Smoke Inside the Home?

.4

]

.7 .6]

*x=1
¥ =2
*x=1
*X=2

334 70 29 1233

282 20

9

931]

* G denotes the split sample
* P(X|G) varies across split
* For G=1 A = ff and B=CATI

* For G=2 A & B are both CATI

Int: Theta F and Theta T
Int: Phi F and Phi T
Reint: Theta T

Reint: Phi T



€EM Fit Statistics

X-squared = 4.1720 (0.0000)
L-squared 4.2787 (0.0000)
Cressie-Read 4.1952 (0.0000)
Dissimilarity index = 0.0019
Degrees of freedom = 0
Log-likelihood = —-4047.33498
Number of parameters = 7 (+1)
Sample size = 2908.0
BIC (L-squared) = 4.2787
AIC (L-squared) = 4.2787
BIC(log-likelihood) = 8150.4965

(

AIC(log-likelihood) = 8108.6700
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N = NG

.5729

0.4271

O O O O *

.2288
.2507
L1712
. 7493

€EM Estimates

NIRRT
——

NNNDNRER R X

Q)

NN 2 NN 2

*

oleoleoleoleoleoleole

.9207
.0793
.9516
.0484
.0413
. 9587
.0002
.9998

NN EREREDNNERE DN "™

. ___F

N NN NN R PP X

)

NN R RN R —

*

O O O O O o o o

.9516
.0484
.9516
.0484
.0002
. 9998
.0002
.9998
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Importance of Model Validity Depends on the
Application

In some applications, validity can be supported by
ability to identify real questionnaire problems.

n other applications, this type of validation may
e quite difficult

~urther, LCA methodology is being pushed in the
US to adjust the reported survey estimates for
misclassification bias.

— Unemployment rate

— Expenditures

— Total population size in a census




Analyzing Unequal Weighting and
Clustered Samples (“Analysis of survey data”)

* Option 1: Ignore the weights and clustering

— Pros: Often these do not change estimates of
classification error

— Cons: can lead to false inference about

classification error (see, for example, Patterson, Dayton and
Graubard (2002))
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Analyzing Unequal Weighting and
Clustered Samples (cont’d)

e Option 2: Use software (Latent Gold, Mplus)
that properly account for the weights

— Pros: Unbiased estimates and asymptotically
unbiased standard errors

— Cons: Convergence problems in some cases
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