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Latent Variable Analysis 

Latent Variable Manifest Variable 

Factor analysis Continuous Continuous 

Latent trait analysis Continuous Discrete 

Latent profile analysis Discrete Continuous 

Latent class analysis Discrete Discrete 

Bartholomew, D.J., and Knott, M. (1999). Latent Variable Models and Factor Analysis. London: Arnold.  
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Latent Class Analysis (LCA) 

• Developed in 1950’s 

– Lazarsfeld, Henry, Green 

• Outcome variables can be dichotomous or 
polytomous (nominal or ordinal) 

• Very extensive field 

• Advanced use requires knowledge of log-
linear models with and without latent 
variables 
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Some applications of LCA 
Nonsampling Error Analysis 
• Identifying flawed questions and other 

questionnaire problems 
• Estimating census undercount in a capture-

recapture framework 
• Characterizing respondents, interviewers, and 

questionnaire elements that contribute to survey 
error 

• Adjusting for nonresponse and missing data in 
surveys 

• We will only touch upon LCA applications 
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Some Other Applications (cont’d) 

Social Science Analysis 

• Causal modeling 

• Log-linear analysis compensating for measurement 
error 

• Cluster analysis 

• Variable reduction and scale construction 



Why in this course? 

• Very useful class of models 

• Few people seem to know about LCA 

• Course plan indicates a content of science and 
models. LCA does involve scientific issues. 

 

Stockholm University, autumn semester 
2012 

6 
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Use of LCA for  
Investigating Survey Error 

• LCA methods and models are prone to misuse 
– E.g., adjustment vs. evaluation 
– Lack of attention to assumptions 
– Weak indicators 

• LCA is best use in conjunction with other 
methods 

• Avoid the temptation to believe the model is 
true 
– Consider the risks if the model is not true 
– Take steps to verify the model assumptions and to 

validate the estimates 
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Maximum Likelihood Estimation 

•     the true population proportion 
• SV, the sampling variance 
• SRV, the simple response variance, 
• R, the reliability ratio 
• Measurement bias of the sample proportion, 

Bias(p) 
• Total variance, Var(p) 
• Total MSE(p) 

Recall that                 contain all the information we need to estimate: 

We can estimate                 in some cases using only information 

from remeasurements of the characteristics of interest. 

ˆ ˆˆ , , and  

,

ˆ ˆˆ , , and  

ˆ ˆˆ , , and  
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Latent Class Models for Measurement Error 

Reinterview (y2) 

1 2 

Interview (y1) 1 n11 n12 

2 n21 n22 

Consider the following: 

Or more generally: any second measurement that is similar (or next 
identical in type) to first measurement (i.e. not necessarily a better 
measurement) 
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Slight Change in Notation 

 denotes observation  on unit 

1 denotes positive response and 

= 2 denotes a negative response

tr

tr

y t r

y 
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Assume: 

• SRS (simple random sample) 

• Two parallel measurements are available 

•             (homogeneity, ie constant 

probabilities for misclassification) 

 

0 

Pr (n11, n12, n21, n22) is a multinomial 
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Multinomial Distribution 

Consider  the distribution of  the 2×2 table with cells  

(11, 12, 21, 22)  

 

Let π11 = P(yi falls in cell 11) and define similarly. 

 

 

Then,  
 

11 12 21 22

11 12 21 22 11 12 21 22

11 12 21 22

P( , , , )
n n n n

n
n n n n

n n n n

 
     
 

12 21 22, ,  
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For the interview-reinterview table, 

11 1 2

21 1 2

12 1 2

22 1 2

( 1, 1)

( 2, 1)

( 1, 2)

( 2, 2)

r r

r r

r r

r r

π P y y

π P y y

π P y y

π P y y
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11 1 2

1 2

( 1, 1 | 1) ( 1)

( 1, 1 | 2) ( 2)

(1 )(1 ) (1 )

r r r r

r r r r

π P y y μ P μ

P y y P

     

       

       

2 2(1 ) (1 )     
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21 1 2

1 2

12 21

22 1 2

1 2

2 2

( 2, 1 | 1) ( 1)

( 2, 1 | 2) ( 2)

(1 ) (1 ) (1 )

( 2, 2 | 1) ( 1)

( 2, 2 | 2) ( 2)

(1 ) (1 )

r r r r

r r r r

r r r r

r r r r

π P y y μ P μ

P y y P

π π

π P y y μ P μ

P y y P

     

       

      

     

       

     

=By assumption: 
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Summarising: 

11

12 21

22

2 2

11 12 21 22
2 2

[(1 ) (1 )]

[ (1 ) (1 )(1 )]

[ (1 ) (1 )]

n

n n

n

n
 

n n n n
 



   
  

          
   

     

11 12 21 22Likelihood L( , , | , , , ) = n n n n  

11 12 21 22

11 12 21 22 11 12 21 22

11 12 21 22

P( , , , )
n n n n

n
n n n n

n n n n
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Maximum Likelihood Estimation 

The best (ML) estimates of 

, ,  

are those that maximize L as a function of                

Unfortunately, no unique solution exists (ie model is not identifiable). 

 

3 parameters 

2 degrees of freedom (d.f.) 

 

Why only 2 d.f. and not 3 since it is a 2x2 table?  

 

# param > # d.f. and model is not identifiable. 

, ,  
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Suppose we let 

                  [This is not realistic.  Why not?  Nevertheless…] 

Then, plugging into the previous formula, 

L(n11,n12, n21, n22| π, ε ) 

, say   

11 12 21

22

2 2

2 2

cons tan t [(1 ) (1 )] [ (1 )]

[ (1 ) (1 )]

n n +n

n

        

     

     

    

Two parameters π,ε and two d.f.,

so now π,ε estimable

Notation for common probability 
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But, no d.f. left over to estimate model fit (no chi-square test).  

Solution fits the data perfectly 

 

  

No d.f. test model validity or fit. 

==>  model is saturated. 
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Example 
Reinterview 

 

Interview 

1 2 

1 1000 50 

2 100 500 

Find MLE of  

Numerical methods to solve equations, e.g.: 

 grid search 

 Newton-Raphson 

 Iterative Proportional Fitting (IPF) 

 EM-algorithm 

, 
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More General Model (Hui-Walter, 
1980) 

Interview 

Assumes that error distributions for interview and reinterview are 

not equal. 

As before, we assume 

• Single latent variable 

• Local independence   (we do not assume parallel measurements) 

Need at least 5 d.f. to estimate these five parameters: 

, (int .) , (int .)

(reint .) , (reint .)

 

 

, (int .), (int .), (reint .), (reint .)    
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Trick: Introduce a Bivariate Grouping Variable, G 

Reinterview 

 

Interview 

1 2 

1 n111 n112 

2 n121 n122 

Reinterview 

 

Interview 

1 2 

1 n211 n212 

2 n221 n222 

Group 1 (G=1) 

Group 2 (G=2) 



23 

How many d.f. are there? 

==>  up to 6 parameters can be estimated 

 

10 Parameters in the unrestricted model 

Group 1 
1, 1 1

1 1

(int .) (reint .)

(int .) (reint .)

 

 

Group 2 2 , 2 2

2 2

(int .) (reint .)

(int .) (reint .)

 

 

3    from G=1 table 

3    from G=2 table 
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Need to constrain the model to save 4 df’s 

Hui-Walter constraints 

1 2 int

1 2 int

1 2 reint

1 2 reint

(int .) (int .)

(int .) (int .)

(reint .) (reint .)

(reint .) (reint .)

    

    

    

    

In words, assume classification probabilities do not differ by group. 

Now, 6 parameters and 6 d.f. so model can be estimated 

Completely saturated, i.e., 0 d.f. for error 
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Likelihood 

111 121 112 122 211 221 212 222

111 121 112 122 211 221 212 222( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
n n n n n n n n

        

1 2 int int reint reintLikelihood = P( , , , , | , 1,2, 1,2,  1,2)gijn g i j        

where 

1 2P( , , )gij G g y i y j    

( ) gijn

gij

g i j
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Likelihood 

1 2 int int reint reint, , , ,     

 211 2 int reint 2 int reint 2(1 )(1 ) (1 )g=         

 111 1 int reint 1 int reint 1(1 )(1 ) (1 )g=         

These probabilities can be rewritten in terms of   

and so on. 

Plug these into L and maximize to obtain ML estimates 

1 2 int int reint reint
ˆ ˆ ˆ ˆˆ ˆ, , , ,     
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Results for 1996 US Current Population Survey 
Reinterview 

Males Females 

Interview 

Response 

Reinterview Response Interview 

Response 

Reinterview Response 

EMP UNEMP NLF EMP UNEMP NLF 

EMP 2372 14 29 EMP 2087 6 60 

UNEMP 10 90 27 UNEMP 10 75 41 

NLF 75 18 974 NLF 87 33 1639 

Are the Hui-Walter assumptions plausible for these data? 

Input Data 



28 

Hui-Walter Model Estimates of Classification 
Probabilities, fictitious numbers 

Interview 

True Status Observed Status 

EMP UNEMP NLF 

EMP 98.6 

(0.1) 

1.4 

(0.1) 

0.0 

(n/a) 

UNEMP 5.6 

(15.2) 

61.6 

(11.1) 

27.9 

(5.3) 

NLF 2.6 

(1.5) 

0.0 

(n/a) 

97.4 

(1.1) 

Standard errors in brackets 
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Now: Three Indicator LC Model 

C=1 C=2 

B=1 B=2 B=1 B=2 

A=1 

A=2 

121n111n

DATA 

222n212n221n
211n

122n
112n
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Classical Latent Class Model 

• Requires a minimum of three indicators of X 
for unrestricted model 

– Say, A, B, C 

• Assumes local independence 

– i.e., P(A and B and C|X) = P(A|X)P(B|X)P(C|X) 

• Notation 

 |

| |

 or ( ),

 or ( | )

Also, ,

X

X x x

A X

A a X x a x

X ABC

x abc

P X x

P A a X x
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Interpretations of Local Independence 

| | | |

| | | |

 classification errors are independent

      i.e., , ,  represent independent 

      selections from an individual's 

      response distribution

ABC X A X B X C X

abc x a x b x c x

A B C

   



We can refer to this model as  {A|X B|X C|X} or  

{AX BX CX} (borrowed from log-linear modeling) 
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Latent Class Model for Three 
Indicators 

2 2
| | | |

| | | |

1 1

ABC X ABC X X A X B X C X

abc x abc x x a x b x c x

x x

      
 

  

( | ) ( ) abcnABC

abc

a b c

L π n
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Path Diagram 

X 

A C B 

What is not shown is as important as what is shown 
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MLE Methods of Estimation 

• π-probability model 

– Our focus in this course 

• log-linear model with latent variable 

• modified path model 

The latter two methods require knowledge of 
log-linear models which is not assumed in this 
course 
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LCA Software include: 

• Free software 

– ℓEM 

– “SAS” by PennState University 

• Commercial software 

– Mplus 

– Latent Gold 

Others: http://www.john-
uebersax.com/stat/soft.htm 
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Design of the NHSDA 

• National, multistage, household survey 
• 1994, 1995, 1996 data  
• 43,825 total interviews 
• data are weighted  
• drug questions are repeated 
• See Biemer and Wiesen (2002) 
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Three Indicators of Past-Year 
Marijuana Use 

The Recency Question (Indicator A ) 
 
 How long has it been since you last used 

marijuana or hashish? 
 

A = 1  if either “Within the past 30 days” or 
“More than 30 days but within past 12 
months” 

A = 2 if otherwise 
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Three Indicators of Past-Year 
Marijuana Use 

The Frequency Question (Indicator B ) 
 

 Now think about the past 12 months from 
your 12-month reference date through 
today.  On how many days in the past 12 
months did you use marijuana or hashish? 

 

 B = 1 if response is 1 or more days;  

 B = 2 if otherwise 



39 

Three Indicators of Past-Year 
Marijuana Use 

The Composite Question (Indicator C ) 

 7 questions such as 

• used in last 12 months? 

• spent a great deal of time getting it, using it, 
or getting over its effects? 

• used drug much more often or in larger 
amounts than intended? 

C = 1 if response is positive to any question;  

C = 2 if otherwise 
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Evidence of Reporting Error: 
Inconsistency in A, B, and C 

Comparison 1994 1995 1996 

A vs. B 1.35 1.48 1.61 

A vs. C 4.80 2.14 2.48 

B vs. C 4.96 2.31 2.69 

A vs. B vs. C 5.55 2.96 3.39 
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1995 Marijuana Data 

C=1 C=2 

B=1 B=2 B=1 B=2 

A=1 1158 11 73 3 

A=2 114 191 135 16064 
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Introduction to ℓEM 
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Introduction to ℓEM (cont’d) 

man 3   

lat 1 

dim 2 2 2 2 

lab X A B C 

mod  X A|X B|X C|X 

dat [1158 73 11 3 114 135 191 
16064] 

*Number of manifest variables 

*Number of latent variables 

*Dimensions 

*Labels 

*Model 

                                        *Data 
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Introduction to ℓEM (cont’d) 
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Introduction to ℓEM (cont’d) 

*Number of manifest variables 

*Number of latent variables 

*Dimensions 

*Labels 

*Model 

*Starting values for A|X 

*Starting values for B|X 

*Starting values for C|X 

                                         *Data 

*Output control 

*Output control 

*Output control 

man 3 

lat 1 

dim 2 2 2 2 

lab X A B C 

mod  X A|X B|X C|X 

sta A|X [.9 .1 .1 .9] 

sta B|X [.9 .1 .1 .9] 

sta C|X [.9 .1 .1 .9] 

dat [1158 73 11 3 114 135 191 16064] 

npa 

nR2 

nla 
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ℓEM Output (cont’d) 

LEM: log-linear and event history analysis with missing data. 

Developed by Jeroen Vermunt (c), Tilburg University, The 

Netherlands. 

Version 1.0b (September 18, 1997). 

 

*** INPUT *** 

 

  man 3 

  lat 1 

  dim 2 2 2 2 

  lab X A B C 

  mod  X A|X B|X C|X 

  sta A|X [.9 .1 .1 .9] 

  sta B|X [.9 .1 .1 .9] 

  sta C|X [.9 .1 .1 .9] 

  dat [1158 73 11 3 114 135 191 16064] 

  npa 

  nR2 

  nla 
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ℓEM Output (cont’d) 
*** STATISTICS *** 

 

  Number of iterations = 8 

  Converge criterion   = 0.0000008181 

  Seed random values   = 5307 

 

  X-squared            = 0.0000 (0.0000) 

  L-squared            = 0.0000 (0.0000) 

  Cressie-Read         = 0.0000 (0.0000) 

  Dissimilarity index  = 0.0000 

  Degrees of freedom   = 0 

  Log-likelihood       = -7371.28926 

  Number of parameters = 7 (+1) 

  Sample size          = 17749.0 

  BIC(L-squared)       = 0.0000 

  AIC(L-squared)       = 0.0000 

  BIC(log-likelihood)  = 14811.0671 

  AIC(log-likelihood)  = 14756.5785 

 

WARNING: no information is provided on identification of 

parameters 
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ℓEM Output (cont’d) 

*** FREQUENCIES *** 

 

  A B C     observed  estimated  std. res. 

  1 1 1    1158.000   1157.999      0.000 

  1 1 2      73.000     73.001     -0.000 

  1 2 1      11.000     11.001     -0.000 

  1 2 2       3.000      2.999      0.000 

  2 1 1     114.000    114.001     -0.000 

  2 1 2     135.000    134.999      0.000 

  2 2 1     191.000    191.000      0.000 

  2 2 2   16064.000  16064.000     -0.000 
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ℓEM Output (cont’d) 

*** (CONDITIONAL) PROBABILITIES *** 

 

* P(X) * 

 

  1              0.0768 

  2              0.9232 

 

* P(A|X) * 

 

  1 | 1          0.9115 

  2 | 1          0.0885 

  1 | 2          0.0001 

  2 | 2          0.9999 
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ℓEM Output (cont’d) 

* P(B|X) * 

 

  1 | 1          0.9906 

  2 | 1          0.0094 

  1 | 2          0.0079 

  2 | 2          0.9921 

 

* P(C|X) * 

 

  1 | 1          0.9407 

  2 | 1          0.0593 

  1 | 2          0.0117 

  2 | 2          0.9883 
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Fit Statistics 

• X-squared 
• L-squared             
• Dissimilarity index  
• Degrees of freedom 
• Log-likelihood     
• Number of parameters 
• Sample size 
• BIC(L-squared) 
• AIC(L-squared) 
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Pearson Statistic 

2
2 ˆ( )

ˆ
abc abc

abc abc

n m
X

m




ˆ  model estimated frequency in cell ( , , )abcm a b c

Distributed approximately as a chi-

square random variable if the model is 

true. Poor approximation if average cell 

size is less than 5. 
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Likelihood Ratio Chi-square Statistic 

 

 2 2 log( )
ˆ

abc
abc

abc abc

n
L n

m
 

Distributed approximately as a chi-

square random variable if the model is 

true.  Poor approximation if average cell 

size is less than 5. 
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Dissimilarity Index 

 

 ˆ| |
2

2

abc abc

abc

n m
D

n


 

Smallest proportion of observations 

that would need to be reallocated to other cells 

to make the model fit perfectly.   

Should be less than 0.05 for a well-fitting 

model. 
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Degrees of Freedom 

 

  number of cells -  

         number of estimated model parameters

df 
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Log-Likelihood 

 

 ˆlog( ) log( )abc abc

abc

L n 
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BIC, AIC, BIC-L2 and AIC-L2 

 

 

2 2

2 2

2log (log )

2log 2

( ) log( )

( ) 2

BIC L n npar

AIC L npar

BIC L L df n

AIC L L df
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Three Indicator Model with a 
Grouping Variable 

X 

A C B 

G 

Model:  GX A|X B|X C|X 
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Three Indicator Model with a 
Grouping Variable 

X 

A C B 

G 

Model:  GX A|X B|X C|X 

This is the Hui-Walter 

model for three 

indicators. 

Do you see the 

implied constraints? 
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ℓEM Input Code 

man 4       * 4 manifest variables 
lat 1       * 1 latent variable 
dim 2 2 2 2 2 
lab X S A B C * S=1(Males)                  
     =2(Females) 

mod  SX A|X B|X C|X 
rec 16   * 16 records in data set 
rco      * last column is a count   
sta A|X [.9 .1 .1 .9] 
sta B|X [.9 .1 .1 .9] 
sta C|X [.9 .1 .1 .9] 
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ℓEM Input Code 

 
 
 
 
 
 
 
 
dat [          *  Data ordering is  
1 1 1 1 698   *  Sex   A   B   C   Count 
1 1 1 2     
1 1 2 1 5  
1 1 2 2 2  
1 2 1 1 65  
1 2 1 2 83  
1 2 2 1 121  
1 2 2 2 7495  
2 1 1 1 460  
2 1 1 2 30  
2 1 2 1 6  
2 1 2 2 1  
2 2 1 1 49  
2 2 1 2 52  
2 2 2 1 70  
2 2 2 2 8569] 
npa 
nR2 
nla 
 



62 

Three Indicator Model with a 
Grouping Variable – Fully Saturated 

Model:  GX A|XG B|XG C|XG 

X 

A C B 

G 
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Three Indicator Model with a 
Grouping Variable – Fully Saturated 

2
| | |

| | |

1

GABC GX A XG B XG C XG

gabc gx a xg b xg c xg

x
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ℓEM Input Code 

man 4                       

lat 1                       

dim 2 2 2 2 2 

lab X S A B C               

mod  SX A|SX B|SX C|SX 

rec 16                      

rco                         

sta A|SX [.9 .1 .9 .1 .1 .9 .1 .9] 

sta B|SX [.9 .1 .9 .1 .1 .9 .1 .9] 

sta C|SX [.9 .1 .9 .1 .1 .9 .1 .9] 

Starting values for each 

group.  Order consistent 

with lab statement 
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ℓEM Results for Grouping Variable Models 

Model d.f L2 p D BIC-L2 

  X A|X   B|X   C|X 7 49.0 0.0 0.024 117.4799 

SX A|X   B|X   C|X 6 33.2 0.0 0.006 

 

-25.4787 

 

SX A|XS B|XS C|XS 0 0 n/a 0 0 
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ℓEM Estimates for Model 2 

*** (CONDITIONAL) PROBABILITIES *** 
 
* P(XS) * 
 
  1 1            0.0461 
  1 2            0.0308 
  2 1            0.4335 
  2 2            0.4896 
 
* P(A|X) * 
 
  1 | 1          0.9110 
  2 | 1          0.0890 
  1 | 2          0.0001 
  2 | 2          0.9999 
 

* P(B|X) * 
 
  1 | 1          0.9905 
  2 | 1          0.0095 
  1 | 2          0.0079 
  2 | 2          0.9921 
 
* P(C|X) * 
 
  1 | 1          0.9402 
  2 | 1          0.0598 
  1 | 2          0.0117 
  2 | 2          0.9883 
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Specifying Hui-Walter Model in ℓEM  

X 

A B 

G 

Model:  GX AX BX 
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Two Parameter, Two Indicator Model 

lat 1 
man 2  
dim 2 2 2 
lab X A B 
mod X 
    A|X eq2 
    B|X eq2  
des[0 1 1 0  *Set   A=2|X=1 = A=1|X=2 
    0 1 1 0] *    = B=2|X=1 = B=1|X=2 
sta A|X [.9 .1 .1 .9]  
sta B|X [.9 .1 .1 .9] 
dat [1000 100 50 500] 
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A Model for Estimating Mode Effects 

Study Design (Biemer, 2001) 

Draw a sample and randomly 

divide.  Assign one subsample to 

F-F; the other to CATI.  

Reinterview both by CATI. 

Reinterview by CATI 

B=1 B=2 

Interview by  

Face to face 

A=1 nF11 nF12 

A=2 nF21 nF22 

Interview by 

CATI 

A=1 nT11 nT12 

A=2 nT21 nT22 
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Model Assumptions 

• X denotes (latent) true characteristic   

• G=1 denotes F-F sample 

• G=2 denotes CATI sample 

• CATI interview and CATI reinterview share a 
common mode effect; i.e., 

 

 

| |

|1 |2  X G X G

x x 

| | |

2|12 2|12 2|11

| | |

1|22 1|22 1|21

 and A XG B XG B XG

T

A XG B XG B XG

T
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Summary of Model Parameters 

| |

1|1 1|2, , , , , ,G X G X G

g T F T F      

Leaving 0 d.f. for testing fit 
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Does Anyone Smoke Inside the 
Home? 

Reinterview by CATI 

R=1 R=2 

Interview by  

Face to face 

F=1 334 70 

F=2 29 1233 

Interview by 

CATI 

T=1 282 20 

T=2 9 931 
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ℓEM Input Code 

*  Example:  Does Anyone Smoke Inside the Home? 
lat 1 

man 3  

dim 2 2 2 2  

lab X G A B                  

mod G      

    X|G  

    A|GX eq2   

    B|GX eq2  

sta X|G [.3 .4 .7 .6] 

des [0 1 0 2  

     3 0 4 0     

     0 2 0 2    

     4 0 4 0]   

dat [ 334 70 29 1233  

      282 20  9  931] 
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ℓEM Input Code 

*  Example:  Does Anyone Smoke Inside the Home? 
lat 1 

man 3  

dim 2 2 2 2  

lab X G A B              *    G denotes the split sample 

mod G      

    X|G                  *    P(X|G) varies across split 

    A|GX eq2             *    For G=1 A = ff and B=CATI  

    B|GX eq2             *    For G=2 A & B are both CATI 

sta X|G [.3 .4 .7 .6] 

des [0 1 0 2    *X=1 Int: Theta_F and Theta_T 

     3 0 4 0    *X=2 Int: Phi_F and Phi_T 

     0 2 0 2    *X=1 Reint: Theta_T 

     4 0 4 0]   *X=2 Reint: Phi_T 

dat [ 334 70 29 1233  

      282 20  9  931] 
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ℓEM Fit Statistics 

  X-squared            = 4.1720 (0.0000) 

  L-squared            = 4.2787 (0.0000) 

  Cressie-Read         = 4.1952 (0.0000) 

  Dissimilarity index  = 0.0019 

  Degrees of freedom   = 0 

  Log-likelihood       = -4047.33498 

  Number of parameters = 7 (+1) 

  Sample size          = 2908.0 

  BIC(L-squared)       = 4.2787 

  AIC(L-squared)       = 4.2787 

  BIC(log-likelihood)  = 8150.4965 

  AIC(log-likelihood)  = 8108.6700 
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ℓEM Estimates 

* P(G) * 

  1      0.5729 

  2      0.4271 

 

* P(X|G) * 

  1 | 1  0.2288 

  1 | 2  0.2507 

  2 | 1  0.7712 

  2 | 2  0.7493 

 

* P(A|XG) * 
  1 | 1 1   0.9207 
  2 | 1 1   0.0793 
  1 | 1 2   0.9516 
  2 | 1 2   0.0484 
  1 | 2 1   0.0413 
  2 | 2 1   0.9587 
  1 | 2 2   0.0002 
  2 | 2 2   0.9998 

 

 

* P(B|XG) * 

  1 | 1 1   0.9516 

  2 | 1 1   0.0484 

  1 | 1 2   0.9516 

  2 | 1 2   0.0484 

  1 | 2 1   0.0002 

  2 | 2 1   0.9998 

  1 | 2 2   0.0002 

  2 | 2 2   0.9998 
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Importance of Model Validity Depends on the 
Application 

• In some applications, validity can be supported by 
ability to identify real questionnaire problems. 

• In other applications, this type of validation may 
be quite difficult 

• Further, LCA methodology is being pushed in the 
US to adjust the reported survey estimates for 
misclassification bias. 
– Unemployment rate 

– Expenditures 

– Total population size in a census 
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Analyzing Unequal Weighting and  
Clustered Samples (“Analysis of survey data”) 

• Option 1: Ignore the weights and clustering 
– Pros:  Often these do not change estimates of 

classification error 

– Cons:  can lead to false inference about 
classification error (see, for example, Patterson, Dayton and 
Graubard (2002)) 
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Analyzing Unequal Weighting and  
Clustered Samples (cont’d) 

• Option 2: Use software (Latent Gold, Mplus) 
that properly account for the weights 

– Pros:  Unbiased estimates and asymptotically 
unbiased standard errors 

– Cons:  Convergence problems in some cases 


